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Abstract--This paper extends the work in Shail (1979) on the problem of an axisymmetric submerged solid 
rotating slowly and steadily in a fluid whose surface is covered with a surfactant film. The bulk fluid is of 
finite extent, and both asymptotic and numerical results (the latter in the case of a thin circular disk) are  

given for boundary effects on the resistive torque and surface velocity profile when the container is a right 
circular cylinder and the fluid is of finite depth. 

1. INTRODUCTION 

In the first paper of this series (Shail 1979), hereafter referred to as I, the problem of an 
axisymmetric solid rotating in the presence of a fluid surface covered with a monomolecular 
surfactant film was considered. The bulk substrate fluid in I is taken to be semi-infinite in 
extent, and the fluid motion generated by the rotating solid is axisymmetric, steady and 
sufficiently slow to permit linearisation of the equation of motion satisfied by the azimuthal 
component of fluid velocity. The aim of the work, in which the rotating solid is a thin circular 
disk, is the investigation of viscometric methods for the measurement of 71, the coefficient of 
surface shear viscosity of adsorbed film; the alternative case of a rotating sphere has been 
treated by Davis & O'Neill (1979). 

The presence of the surfactant film influences the friction couple on the solid, and the 
analysis in I provides sufficient information to allow an evaluation of rl. However, the proximity 
of finite boundaries of the fluid container also influences the couple, and an accurate deter- 
mination of r/therefore requires a consideration of container boundary effects. 

It is the purpose of this paper to supply a suitable analysis of boundary effects, again with 
particular emphasis on the rotating disk viscometer of I. The integral equation approach 
developed in I is summarised in the next section, and the appropriate Green's function for a 
right cylindrical container is giyen. In section 3 asymptotic results for the friction couple, valid 
for an arbitrary axisymmetric rotator, are developed for the case when the rotating body is far 
from the fluid boundaries, thus generalising to surfactant situations the results of Brenner (1961) 
and others. 

In section 4 the techniques of I are used to reduce the rotating-disk problem to the solution 
of a Fredholm integral equation of the second kind, and a description is given of the numerical 
treatment of this equation. Section 5 contains a representative sample of the extensive 
numerical results which have been obtained for both the frictional couple on the rotating disk, 
and the surface fluid velocity profile. The Appendix to the paper contains a derivation of the 
Green's function used, a calculation which requires the expansion of a function in terms of a 
complete, but non-orthogonal, set. 

2. BASIC EQUATIONS 

A vertical right circular cylindrical container of radius b and height H is filled with 
incompressible viscous fluid whose plane horizontal surface is covered with an adsorbed 
monomolecular film. A totally immersed solid with surface S rotates slowly in the fluid about a 
vertical axis of symmetry, common to the container and the solid, with constant angular speed 
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[I. A suitably chosen centre 0 of the solid is at a distance h( < H) below the surface of the fluid. 
Referring to the geometrical description and cyclindrical polar coordinates (p, ¢, z) at 0 

introduced in section 2 of I, the wetted surface Si of the fluid container is defined by 

p=b,-h<_z<_H-h, 

z=H-h,O<__p<_b, 

and the surface film $2 occupies the region 

z=-h,O<_p<_b, 

all with 0 - 4~ < 2~r. The azimuthal component v(p, z) of fluid velocity satisfies the linearized 
Navier-Stokes equation 

the no-slip conditions 

and 

a2v 1 Ov a2v v 
: 0 ,  

v(p, z) = tqp, (p, z) e S, 

v(p, z) = O, (p, z) ~ S, ,  

[11 

[2] 

[3] 

a_Vv - . a:v 
az X ~ z 2 = O ° n z = - h ' O < o < - b '  [4] 

where a = 9[/~ is the ratio of the surface shear viscosity ~ to the bulk fluid viscosity #. 
As shown in I, the problem of finding v is reducible to that of determining a source density 

tr(p, z), (p, z) ~ S, which satisfies the integral equation 

7rfc tr(p', z')G(I)(p, z; p', z')p'dl, (p', z') E C, [5] lip 

where C is the bounding curve of S in a meridional plane and dl' denotes the element of arc 
length of C. In [5] 

1 
o-(p, z ) =  - ~--~ p an \ p ]  

and G¢l)(p, z; p', z') is the coefficient of cos (~ - ~') in the Fourier expansion of the Green's 
function G(p, z, th; p', z', ~b') which satisfies the equation 

V2 G = _ 4 ~ r  ~ ( p  _ p ' ) , ~ (4 '  - 4 , ' ) 8 ( z  - z ' ) ,  [ 6 l  
P 

and conditions [3] and [4]. The problem of determining G is treated in the Appendix, where it is 
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shown that 

~JI f: GO)(p, Z; p', Z') = 2 (tjp)Jn(/jp')e-¢lz-z'ld/j + 2 [(1 - ,~O{e -~2h-n) cosh (~(z + z')) 

- e - ~  cosh (~(z - z'))}- e-¢C~+~{cosh (~(2h - H) 

+ A~ sinh (~(2h - H))}] Jn(~)Jn(~p') 
cosh ~H + A~ sinh ~H dE 

-16  ~ ,  . . . .  . p , . K ~ , b )  , .  Ii(p,,p)I~(p,p')sin{p,(z- H + h)} sin {p,(z '-  H + h)}, 
= (ZHp~ ÷ sin Zl'lpn)ll[Pnl; ) 

[71 

where p., n = 1, 2, 3 . . . .  are the positive roots of the equation 

cos p,,H - Xp,, sin p,,H = O. [8] 

In terms of cr the frictional couple N acting on the solid is 

N = - 8 ¢r21z fc P2°'(P' z)dl. [9] 

3. ASYMPTOTIC RESULTS 

In this section we discuss the asymptotic solution of [5] in the case when a/h, a/H and a/b 
are small compared with unity, a being a typical dimension of the rotating body. Whilst this 
situation is not of such great practical importance, the methods used and formulae obtained are 
of some theoretical interest, providing an extension and alternative derivation of the results of 
Brenner (1961) on boundary effects. In the following analysis it is assumed that the small 
quantities a/h, a/H and alb are all of the same order; thus O(a/h) is to be interpreted as O(a/h, 
a/H, a/b). We write 

G a) = G[ l) + Gt D , [I0] 

where 

G[ ~ = 2 f :  Y,(~p )Y~(~p')e-~-~'Jd~. [11] 

In [10] G[ 'J is the coefficient of cos ( 0 ' - 0 )  in the expansion of the singular inverse distance 
Green's function in cylindrical coordinates, and Gt ') is regular at p = p', z = z'. By direct 
expansion of [7] it may be verified that 

as h -~®, where A and B (which depend on the ratio A/h) are coristants with 

[12] 

We now develop o'(O, z) as 

A = lim h3Gl~)(p, 0; p', 0)/pp'. [13] p,p'--~) 

~,(p, z)=cro(p, z)+~o'~(p,  z)+ cr2(p, z)+ . . . .  [14] 
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where h-lo"i+l(p, z)= O(o,;(p, z)) as h ~ ,  and o"o is the source density appropriate to a solid 
rotating in an infinite fluid. Substituting [12] and [14] into [5] we determine the ~r~ by the 
sequence of integral equations 

fc O"o(P', z')G~I)(P, z; p'z')p'dl' = llp, [15] 7I" 

fc O"I(P', z')Go")(P, z; p', z')p'dl'= - Ap fc P'2°'°(P" z')dl', [161 

fc o"2(p', z')Oo"(p, z; p', z')p'dl' = - Bp fc p'2(z + z')o"o(p', z')dl', [17] 

where (p, z) ~ C. Comparing [15] and [16] it follows that 

o"l(P, z)= - ~  A p'2~o(p', z')dl' o"o(P, z). [18] 

Further, from [9] 

1 
N = -  87'/'2/£{fc p2O.O(p, z)dl +~3 fc/9201(/9' z)dl + ~  fc P20"2(fl' z)dl+ 0(-~) 

= N~ - 8,rAlPh ~ N~ 2 - 8*r2/z ~" a5 h4 jcp2o"2(p, z)dl + O(-~) , [19] 

where N~ is the couple on the solid in an unbounded medium. 
To evaluate the final integral in [19] we multiply [17] by t~ro(p, z) and integrate along C, 

whence 

fc O'o(p, z){/c 0"2(p, z)Go(')(p, z; p', z')p'dl'}pdl 

= - B fcfcP2p'2(z + z'),ro(p, z)o'o(p', z')dldl' . 

Inverting orders of integration and using [15], it follows that 

_~ fcP2a2(p, z)dl=_2B fcp2Zo.o(p, z)dl fcP'20.o(p', z')dl', [20] 

and by a suitable choice of the origin 0 we can ensure that the penultimate integral in [20] 

vanishes. Thus [19] can be written as 

N 1 - A  +O ~-y . [21] 
N~ 

For the container under consideration [7] and [13] show that 

A = h 3 ( o  ~ - 4fl), [22] 

where 

1/'= ~2[( 1 - '~:){ e-e(2h-n) - e-Ca} - {cosh f(2h - H) + A~ sinh f!2h - n)}] dE 

a = 2 Jo ~ cosh ~:H + Af sinh CH 
[231 
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= ~,, p.3Kt(p.b) sin 2 p . ( H -  h) 
. .~ (2Hp. + sin 2p.H)Ii(p.b) 

[24] 

and we can delineate a number of cases of which the following seem to be of most interest. 
Firstly, suppose that A = Mh = O(1), i.e. ~7/pa >> 1 since a/h ~ 1, corresponding to a very 

viscous surface film. Then putting t = ~:h in [23] and tr. = Hp. in [24], [21] and some manipula- 
tion show that 

N ~=I No. [ 1 (  ® t2[(l - At)e -2' - e-2p'{2(l - At) + e2'(l + At)}] 
8~r/~l~h3 [-2Jo (1 + e-2Pt)(1 + At tanh pt) dt 

4 ® a,3Kl(~,q) sin2{a,(] _p-l)}]  a 5 z [25] 

where p = H/ht ,  q = b/H, both of order unity, and n~r < a,  < (n + 1/2)Ir. 
Secondly, suppose that a/h ~ 1, with ~/pLa = O(1) and A = O(alh). Then the result [25] can be 

simpliied by evaluating the integral and infinite series asymptotically for small A. An elemen- 
tary application of Watson's lemma and subsequent integration show that the infinite integral in 
[25] has the asymptotic development 

1 ® • ® . ~: } 2dt + O(A2) 3 ~-_ ~'  ( - l ) J  _~A f ,3f smh(p )t 
4 j=_® [/p - l [ Jo [ cosh [26] 

as  A - * 0 .  

To estimate the infinite series asymptotically we first note the identity 

~r~aKt(~q) sin 2 ¢r~s 1 ® n21r2Kl(n~rq) sin 2 snlr 
,o (2~, + sin 2~)I~(o~nq) = 2 .~1 Ii(nlrq) 

1 f z2Kl(qz) sin 2 sz 
41ri Jr sin z(cos z - p - tAz  sin z) dz,  [27] 

where s = 1 _ p - t  and the contour F is the imaginary axis in the z-plane, indented into the 
fight-hand half-plane at z = _  + ijdq, where the ]., n = 1, 2, . . . ,  are the positive zeros in 
a s c e n d i n g  order of magnitude of Jr(x). The contour integral in [27] can now be expanded 
asymptotically for small A by Watson's lemma, and evaluating the resulting integrals as residue 
series we find that 

~r,3Km(cr, q) sin 2 cr~s 1 T"  1 A 
.~, (2--b-~. + ~ ( - ~ . q ) = ~  ,tq. s ) -~{3r , (q ,  s) 

+ sT2(q, s)+ T3(q, s)}+ O(A2), 

where Tj(q, s), ./= I, 2, 3, are defined by the following rapidly convergent series: 

[28] 

- ~--o e'2Kl(e'q) sin2 e,s 
T,(q, s ) -  I~(e.q) [291 

tFrom the geometry of the system p > 1, thus ensuring the convergence of the integral in [25]. The numerical 
computation of the integral and series in [25] present no particular difficulties. 
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where e. = (n + l/2)zr. 

R. SNAIL and D. K OOODEN 

T2(q, s) = ~ ~"SKl(e"q) sin 2E.s = 
, =o It(e.q) as ' 

~ E .  2sin 2E.s OT1 
T3(q, s) . . . .  ,=o {Ii(e.q)} z Oq' 

Collecting together the various results, [25], [26] and [28] show that 

N N~ [ 1 J" 3 ~ ( - 1 )  i 

2~h fo (sinh__h(p_p-1)t]2dt ~ _ -~2 {.T s) 
\ coshpt / J 

(°3 -~---(3Tl(q, s)+sT2(q, s)+ T3(q, s))}]+ O ~'3 H 

[30] 

[311 

The couple N is given by 

where 

4. THE ROTATING-DISK PROBLEM 

For the remainder of this paper the particular case of the rotation of a thin disk in the 
bounded fluid is treated. Units are chosen so that the radius of the disk is unity, it being 
specified by z = 0, 0 -< 0 <- 1, 0 -< 4) < 2~r. As pointed out in I, [5] must be modified to read 

f0 
1 

120 = rr o'*(p', O)G(I)(p, O; O', O)p'dp', 

p a (v(p,O)] 
cr*(O'0)=-2-~a-~ p /"  

fO I N = - 87r2tz p2~*(O, 0)do, [35] 

Proceeding as in I, we replace the integral equation [33].by an equation of the second kind. 

Defining O(x) by 

~x( '  ~*(w, o) 
O(x) = 2~r L (W2-- X2) ll2dw ' [361 

then 0 is found to satisfy the equation 

fo' O(x) + L(x, y)O(y)dy = 2x, 0 ~ x ~- 1, [37] 

[33] 

[34] 

Examination of the various series and the integral in [32] show that they are easily computed 
numerically for specific values of p, q, s, there being exponential damping in all but the first 
series, which itself presents no problems. In the special case of a sphere (N~ = 8~rtzfla 3) 
rotating in a stratum of fluid of infinite width (b ~ ) ,  the T~-series in [32] vanish, and the 
resulting torque ratio N/N® agrees with that found by Davis & O'Neill (1979). 

[321 
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where 

L(x, y) : 2 f® 2(1 - h~f)e -2~ + (1 + ,~:)¢-~n-h)e _ (1 - AOe -2h~ 
- "~ Jo (1 + ,~) + (1 - A~:)e -2uj 

× sin ix sin ~y dy - 16 ~ p, Kl(p,b) sinh p,x sinh p,y sin 2 pn(H - h) 
'/r n=l (2Hp. + sin 2p.H)I~(p~b ) 

[38] 

Further, in terms of 0, 

fO I N =  - 16f~ xO(x)dx. [39] 

It is not possible to solve [37] in closed form for arbitrary A, h, b and H, and hence 
numerical methods must be used. Equation [37] has been solved numerically using a NAG 
library routine based on El Gendi's (1969) method, which first replaces the unknown O(x) on 
0-< x < 1 by a Chebyshev series of n terms of the form 

O(x) ~ ~ ciTH(2x - I). [40] 

The coefficients c~, i = 1 . . . .  n in [40] are determined from approximate values 0~, i = 1 . . . .  n of 
the function O(x) at a set of n Chebyshev abscissae 

1 
xi =~[I +cos{(/- l)~-/(n - I)}1, i = I .... n. [411 

Further, the values of 0i are obtained by solving a set of n simultaneous linear equations, found 
by applying a quadrature formula, equivalent to that of Clenshaw & Curtis (1960), to [37] at 
each of the points [41]. Having computed the coefficients ci, [40] is used to calculate the values 
of O(x) at 21 equally spaced points in the interval 0 --- x < 1, and the torque is found from [39] by 
numerical quadrature. 

The procedure employed was to start from n = 8 and calculate the solution O(x) in the form 
[40] and the torque for given A, h, b and H; n was then increased in steps of 2 or 3 until 
successive values of the torque showed no change correct to 4 decimal places. It was found that 
as h diminished the value of n required for convergence increased. For example, for h = 0.25 
the procedure converged when n = 10, irrespective of the values of A, b, 1t, whereas for 
h = 0.125 the required value of n was 15. 

In the formulation of the simultaneous equations described above it is necessary to calculate 
the values L(xi, yj) of the kernel [38] at the Chebyshev points (x~, yj). The integration in [38] was 
performed using a Patterson-type quadrature routine, and as in I it proved necessary to use 
several forms of the integral to achieve satisfactory convergence. The integral in [38], L~(x, y) 
say, can be written as 

where 

Ll(x, y ) :  l {M(x + y)- M(Jx- Yl)}, 

. . . .  t" 2(l-~)e- +(l+AOe- - -(l-~)e- 
~'l[v)=Jo ' (1 + ~:)+ (1-A~)e -2~ "cos v~:d~, 

[421 

[43] 

and v satisfies the inequality 0-< v < 2. Writing v~ = t, the integral over t is easily evaluated 
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numerically with a suitable finite upper limit, unless for example v/2h is small. To cover this 
situation a contour integral transformation in which the contour of integration becomes the 
half-line of unit slope issuing from the origin in the (t + iz)-plane was used. The resulting 
integrals then have improved convergence properties, but their length precludes us from 
quoting them. here. 

The summation in the infinite series in [38] at the Chebyshev points (xi, xi) was terminated 
when the modulus of the next term to be added became less than 10 -n. The roots Pn of the 
transcendental equation 

cos p~H - Ap. sin p.H = 0 

were computed using a library iterative routine, use being made of the inequality nrr[H < po < 
(n + l[2)~r[H to establish initial estimates for subsequent rapid convergence. 

As indicated in I. a knowledge of the surface velocity profile can be of practical use. To 
determine v(p, - h) the same steps are followed as in I. leading to the form 

v(p, _h)=41] (~ O(x){f f e-h¢-e -(2u-h)e ~r Jo (1 + h~:) + (1 - ,~Oe -2m Jl(O) sin Cxd~: 

- 4 f~ p.Ii(p.p)Kl(p.b) sinh p,x sin p.H sin p,(H -.h ) } dx. 
.=1 (2Hp, + sin 2p.H)Ii(p.b ) 

[44] 

The .inner infinite integral in [44] contains oscillatory terms and is also slowly convergent for 
h ~ 1. It does not seem to be possible to transform it as in I to a more rapidly convergent form, 
but for the computations presented in the results, a Patterson-type integration routine was 
successfully used to compute for given x and p the form 

fo ~ e-~ - e - ( 2 p - l ) ~  Jl(~p/h) sin (¢x/h)d¢, 
(h + h~:) + (h - A~: )e  -2p¢  

where p = H/h, the infinite range of integration being truncated at ¢ = 20. The summation in [44] 
was terminated when the modulus of the summand was less than 10 -6, and the final evaluation 
of v(p, - h) completed using a library quadrature routine for a discrete function. 

5. NUMERICAL RESULTS 

In this section the results of our detailed computations of frictional couples and surface 
velocity profiles are presented. For a rotating disk of unit radius the problem contains four 
variable parameters, namely A, h, H and b. Tables 1 and 2 give, for varying A, values of 
N(A)//~l) for h = 0.125 and h --0.25 respectively, and for the values (1, 2), (2, 2), (10, 10), (2, 
100) and (100, 100) of the ordered pair (H, b). They illustrate clearly the effects of the finite 
dimensions of the container. The values in the final columns of each table are indistinguishable 
from the semi-infinite fluid results in I. Further, even when H and b are changed from H = 100, 
b -- 100 to H = 10 and b = 10, the percentage change in N(A)[/~I~ is everywhere less than I 
percent. However for H = 1 and b = 2 percentage increases of the order of 10 per cent are 
found for A in the range (0, 1), and further reductions in H and b result in even larger 
percentage increases. It follows that the container boundaries must be sufficiently far from the 
rotating disk in order to avoid boundary effects masking surfactant effects. 

As in I, these tables may be used in conjunction with the method of least squares to give a 
polynomial representation of A as a function of N. The results for 0 <-A <-1 are illustrated 

graphically in figures l and 2. 
A convenient way to exhibit the effect of the surfactant film is afforded by evaluating 
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Table 
t 

k 

0 

0.029 

0.05 

o . ~ 5  
o . i  
0.25 

0.5 

O.75 

1.0 

1.25 

1.5 

1.75 
2.0 

5.0 
4.0 

5.0 

6.0 

8.0 

10.0 

50.0 
lO0.O 

1. Values of N(A)//t[~ for h = 0.125 and various values of A, H and b 

H = 1.0 H = 2.0 H = i0.0 H = 2.0 H = I00.0 

b = 2.0 b = 2.0 b : i0.0 b = 100.0 b = 100.0 

7.9368 7.65#9 7.1810 7.2789 7.1776 

8.218# 7.9557 7,4296 7.5515 7.a~60 

8.4811 8.1985 7,6617 7.7668 7.6579 

8.7287 8.4465 7,8807 7.9888 7.8767 

8.9659 8.6822 8.0888 8.1996 8.0846 

10.1855 9.9092 9.1725 9.2950 9.1671 

11.7409 11.4815 10,5767 10.7082 10.5695 

12.9262 12.6795 11,6704 11.8041 11.6617 

15.8646 15.6281 12,5576 12.6900 12.5476 

14.6277 14.5997 15,2960 15.4252 15.2849 

15.2610 15.0~01 15,9222 14.0472 15.9102 

15.7955 15.5804 14.4609 14.5812 14.4~S1 

16.2522 16.0424 i#,9298 15.0454 14.9164 

17.5676 17.5721 16,5279 16.4251 16.5126 

18.4015 18.2150 17.2562 17.5385 17.2401 

18.9776 18.7972 17.9195 17.9899 17.9029 

19.5995 19.2254 18.4172 18.4786 18.4009 

19.9760 19.8058 19.1159 19.16~2 19.1001 

20.5515 20.1851 19.5851 19.6228 19.5682 

21.7558 21.5810 21,5966 21.4094 21.5907 

21.9292 21.7785 21.6681 21.6772 21.6628 

22.1504 21.9814 21.9474 21.9581 21.9474 

Table 2. Values of N(,t)/pfl for h = 0.25 and various values of ,~, H and b 

H = 1.0 H = 2.0 H = i0.0 H = 2.0 H = IO0.C 

b : 2.0 b = 2.0 b : I0.0 b = i00.0 b = i00.0 

0 9.3223 8.8626 8.2457 8.3797 8.2413 

0.025 9.5102 9.0531 8.4145 8.5504 8.4099 

O. 05 9.6855 9.2310 8.572# 8.7099 8.5677 

O. 075 9.8492 9.3978 8.7210 8.8597 8.7160 

0.1 10.00~9~ 9.5550 8.8613 9.0011 8.8562 
O. 25 10. 7720 10. 3403 9.5712 9.7140 9, 5653 

0.5 11.6667 11.2572 10,4282 10.5687 10.4212 

0.75 12.2830 11.8896 11.0459 11.1807 iI,0381 

1.0 12.7548 12. 3533 II • 5172 Ii. 6454 II, 5088 

1.25 15.0805 12.7081 11.8907 12. 0122 11.8819 

1.5 13.3556 12.9885 12.1950 12.3099 12.1858 

1.75 15.5749 13.2156 12,4~81 12.5571 12.4586 

2.0 15.7579 15.4055 12.6625 12.7657 12.6526 

3.0 14.2546 13.9152 13,2690 15.5548 13.2590 

4.0 14.5482 14.2144 13.6479 13.7212 13.6579 

5.0 14.7421 14.#155 15,9077 15.9721 15.8979 

6.0 14.8798 14.5545 14. 0972 14.1550 i4.0878 

8.0 15.0622 14.7416 14.5556 14.4042 14.5468 

I0.0 15.1777 14.8600 14.5256 14.5664 14.5155 

50.0 15.5815 15.2757 15.1427 15.1668 15.1598 

i00.0 15.6557 15.5295 15.2506 15.2550 15.2289 

15.6912 15. 3864 15.5211 15.5424 15.5211 
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14.0 

13.0 /•(I) (2) 

(3) 
(4) 
(5) 

12.0 

l i d  

I0 .0 

9 0  

8 0  

c~ 
::t. 

7 o  . ,  I I t [ l 
o o .z  o 4  o.6 o.8 ~o 

x 

Figure 1. Graph of N(~)/t~fl vs ,~ for 0 <-~ -< 1, h = 0.125 and (1) / - /=  1.0, b = 2.0; (2) H = 2.0, b = 2.0; (3) 
H = 2.0, b = 100.0; (4) H = 10,0, b = 10.0; (5) H = 100.0, b = 100.0. 

N(A)/N(O), where N(0) is the couple when the surface is free of contaminant. Tables 3 and 4 
show this ratio for h = 0.125 and h = 0.25 respectively. 

We turn next to the surface velocity profiles, again for H = 1 and b = 2. These are sketched in 
figures 3 and 4 for h = 0.125 and h = 0.25 respectively, and various values of )t. 

The maximum surface velocity Vmax is of practical value (see the discussion in I) and tables 5 
and 6 give l'l-lVma~ and l'lT, where T is the periodic time of revolution of a surface particle, 
calculated at the values of p shown in the final column of the tables, at which fl-lv(p, -h) is a 
maximum. Comparison with infinite fluid values of v~,,x and fiT shows that the boundary 
effects are much less than in the case of the couple, e.g. when A = 0.1 the presence of the finite 
boundary changes the periodic time by less than 2 per cent. 

6. C O N C L U D I N G  R E M A R K S  

In this paper we have given a comprehensive treatment, both asymptotic and numerical, of 
finite container boundary effects for the rotational surface viscometer proposed in I. An 
accurate calculation of such boundary effects is clearly necessary since their presence can 
easily mask variations in, for example, the resistive couple on the rotating body due to the 
surfactant film. Oh & Slattery (1978) have considered finite container problems for an interface 
viscometer, but the mathematical techniques employed are very different from those used here. 
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Figure 2. Graph of N(A)/~II vs A for 0 ~  -< 1, h =0.25 and (1) H =  1.0, b =2.0; (2) H = 2.0, b =2.0; (3) 
H = 2.0, b = 100.0; (4) H = 10.0, b = 10.0; (5) H = 100.0, b = 100.0. 

Table 3. Values of N(~)/N(O) for h =0.125 and various values of ~, H and b 

H = 1.0 H = 2.0 H -- i0.0 H = 2.0 H = i00.0 

k b = 2.0 b = 2.0 b = I0.0 b = i00.O b = i00.0 

0 1.0000 1. 0000 1 • 0000 1. O000 1. 0000 

o. 025 i. o355 I. o367 z. 0546 i. o547 i. 0~6 

O. 05 1.0686 1.0710 I • O669 i. 0670 i. O669 

O. 075 1. 0998 i. 1054 i • 0974 1.0975 1.097;4 

O.1 1.1294 1.13/4-2 1.1264 1.1265 1.1264 

O. 25 1.2831 l. 2945 1.2773 1.2770 1.2772 

0.5 1.4793 1.4999 1,4729 1.4711 1.4726 

O. 75 1.6287 1.6564 1.6252 1.6217 1.6247 

1.0 1.7&t69 1.7803 1.7;487 1.7454 1.7482 

1.25 1.8430 1.8811 1.8516 1.8LV~4 1.8509 

1.50 1.9228 1.9648 1.9588 1.9298 1.9380 

i. 75 I. 9902 2.0353 2. O138 2.0032 2. O129 

2.0 2.0~77 2.0957 2.0791 2.0670 2.0782 

3 • 0 2.2135 2.2694 2.2758 2.2565 2.2727 

4.0 2 • 5185 2. 5795 2.4050 2.382O 2.4019 

5.0 2.5911 2.4556 2.4954 2.4715 2.4945 

6.0 2.4~43 2.5115 2.56#7 2.5587 2.5636 

8.0 2 • 5169 2 • 5875 2.6620 2.6328 2.6611 

I0.0 2.5642 2.6369 2.7271 2.6958 2.7262 

50.0 2.738/4- 2.8192 2.9796 2.9415 2.9802 

I00.0 2.7630 2.8450 3.0172 2.9781 5.0181 

• o 2.7883 2.8715 2.0563" 3.0167 2.0577 
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Table 4. Values of N(A)/N(O)for h = 0.25 and various values of A, Hand b 

H = 1.0 H = 2.0 H -- I0.0 H = 2.0 H = i00.0 

b = 2.0 b = 2.0 b = i0.0 b = I00.0 b = i00.0 

0 1.0000 1.0000 1.0000 1.0000 1.0000 

0.025 1.0202 1.0215 i.o205 i.o2o4 1.o205 

0.05 1.0589 1.0416 I.O396 1.0394 1.0396 

0.075 1.0565 I.O6O4 1.o576 1.0575 1.0576 

0.I 1.0751 1.O781 1.0747 i.o742 I.O746 

0.25 1.1555 1.1667 1.1608 1.1592 1.1607 

0.5 1.2515 1.2702 1.2647 1.2612 1.2645 

0.75 1.5176 1.3415 1.3596 1.3343 1.5594 
1.0 1.5661 1.3939 1.5968 1.5897 1.5965 

1.25 1.4051 1.4559 1.~-~20 1.4335 i.z~418 

1.5 1.4324 1.4655 1.4789 1.4690 1.4786 

1.75 1.4562 1.4912 1.5096 1.4985 1.5093 

2.0 1.4758 1.5124 1.535~ 1.5234 1.5355 

5.0 1.5291 1.5699 1.6092 1.5937 1.6089 

4.0 1.5606 1.6039 1.6551 1.6574 1.6548 

5.0 1.5814 1.6263 1.6867 1.6674 1.6864 

6.0 1.5961 1.6422 1.7096 1.6892 1.7094 

8.0 1.6157 1.6635 1.7410 1.7189 1.7408 

lO.0 1.6281 1.6767 1.7614 1.7585 1.7615 

50.0 1.6714 ].7234 1.8564 1.8100 1.8371 

I00.0 1.6772 1.7297 1.8471 1.8202 1.8479 

1.6852 1.7561 1.8581 1.8309 1.8591 

Table 5. Values of fl-'v(p, - h )  and ~%T calculated at the points where O-to(p, - h )  is a maximum, with 
h = 0.125, H = 1.0, b = 2.0 and a range of values of A 

k ~'-Iv max f~T p 

0 0.8176 6.9163 0.9 

0.025 0.7906 7.0754 0.89 

0.05 0.7681 7.2801 0.89 

O. 075 o. 7486 7 • 5865 0.88 

o.i 0.7308 7.4796 0.87 

0.25 0.6496 8.5186 0.86 

0.5 O. 5569 9. 5904 o. 85 

0.75 o. 49Ol lO.7684 0.84 

I.O 0.4385 11.8937 o.83 

1.25 0.3970 13.185o 0.83 

1.5o 0.3629 14.1999 0.85 

1.75 0.53z~2 15.6050 0.83 

2.0 0.3098 16.6298 0.82 

5.0 0.2599 21.4734 0.82 

4.0 0.1958 26. 3080 0.82 

5.0 0.1655 51.1587 0.82 

We have concentrated our numerical efforts on the case of the rotating disk but a similar 
treatment of the rotating sphere can be given. It does not seem to be possible to use the 
bispherical coordinate formulation of Davis & O'Neill (1979) for the finite container geometry, 
but an integral equation of the second kind, analogous to [37] and amenable to numerical 
solution, can be derived. However, since the surfactant effects in the rotating sphere case are 
less pronounced than for the disk, we have not thought it worthwhile to pursue this analysis. 
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Figure 3. Velocity profiles for a = 0.0, 0.025, 0.25 and 1.0 with h = 0.125, H - -  1.0, b = 2.0. 

Table 6. Values of f~-~ v(p,  - h)  and • T calculated at the points where fl-~ v(p,  - h )  is a maximum, with h - 0.25, 
H = 1.0, b = 2.0 and a range of values of 

X •-Iv max ~T o 

0 0.6727 7.9393 0.85 
0.025 0.6474 8.2494 0.85 

0.05 0.6250 8.5457 0.85 

O. 075 0.6048 8.7272 O. 84 

O. 1 O. 5863 9.0020 0.84- 

0.25 0.4992 i0.4460 0.83 

0.5 0.4039 12.9126 0.83 

O. 75 O. 3~oi 15.5321 0.83 

1.0 0.2941 17.733o 0.83 

1.25 o. 2591 20.1247 O. 83 

1.50 o.2317 22.5112 0.83 

1.75 O. 2O95 24.89~ O. 83 

2.0 0.1912 27.2754 0.83 

3.0 0.1418 ~5.7876 0.85 
4.0 0.1127 /46.2909 0.83 

5.0 0.O935 55.7905 0.83 
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Figure 4. Velocity profiles for ,~ = 0.0, 0.025, 0.25 and 1.0 with h = 0.25, H = 1.0, b = 2.0. 
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APPENDIX 

In this appendix we give a derivation of the Green's function G, used in the body of the 

paper. The function G(p, z, 4>; p', z', ~b) satisfies the equation 

WG = _4~r 8(p - p')8(qb - ~')8(z - z') , [All 
/9 
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and the boundary conditions 

and 

G = 0 o n p = b , - h < z < - H - h ,  

G = 0 o n  z = H - h ,  O < p < b ,  

[A2] 

[A3] 

G = I + G I ,  [All] 

aG . •2G ^ 
- - - , t - ~ -  = O ~ z  on z = -h ,  0-<p< b. [A4] 

Using the method of separation of variables, a solution of [AI] which satisfies [A2]-[A4] is 
given by 

G = ~ =  D r . . { K . ( p ~ >  < , .K,(p.b)~ )1,(p.p )- 1,~,~,)I,¢r.p ? ~ ]  

x sin p~(z- H + h) sin p.(z'- H+ h)cos r(¢ - ~'), [A5] 

where p~, n = I, 2, .... arc the positive roots in ascending order of magnitude of the equation 

cos pH - Ap sin pH = 0, [A6] 

and p > = max(p, p'), p < = min(p,p'). In [A5] the D,,~ are constants determined by sub- 
stitution of [A5] in [AI]. This substitution yields the relation 

Ds.. sin p . ( z  - H + h) sin p . ( z '  - H + h) = 2(2- 8,o)8(z - z ' ) , -  h <- z, z' < H - h .  
n = l  

[ATI 

However the set of functions sinp.(z-H+h), n = I, 2, 3 ..... whilst complete, is not an 

orthogonal set on - h < z < H- h, and hence a method due to Rayleigh 0894) must bc used to 
expand 8(z - z') in terms of the set. This result is 

8(z - z') = ~ 4p. sin p,(z  - H + h) sinp.(z' - H + h) 
~ l  2p .H + sin 2p.I-I '" ' [A8] 

whence 

8p. (2 - 8,o) 
Ds.~ --- 2p .H + sin 2p.H ' [A9] 

giving the required Green's function in the form 

G= ~ ~ 8p.(2- ~,o) cos r(,- ~') IK, (p .p  > )l.(p.p < ) 
,=o .~l 2p .H + sin 2p.H [ 

, K,(p.b)~ . 
- l .(p.p)l ,(p.p ) l . --~b)~ sm p. (z  - H + h) sin p,(z '  - H + h) .  [AIO] 

It follows from [AI] that G can be written as 
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where R is the distance between the points (#, qS, z) and (p', $', z') and G1 is regular when 
P = P', ~ = ck', z = z'. Equation [A10] is not in the form [AI 1], but can be easily converted so as 
to display the inverse distance contribution. We note that G*, where 

~, ~, 8p.(2 - 6~o) cos r (4 ,  - 4 / )  
G* = lim G = ~., L. K~(p.p < )L(p.p < l 

b-~ ~=o .=~ 2 p . H  + sin 2 p . H  

x sin p . ( z  - H + h) sin p. (z '  - H + h). [A121 

is the Green's function for an infinite stratum of fluid of depth H with a surfactant layer. An 
alternative form for G* is given by the method of separation of variables as 

fo G* = (2 - ~,o) cos r(¢~ - ~') L(~p)L(~p')e-t(z-Z')d~ 
r=0 

fo x + ~ o  (2 - a,o) cos  r(4, - 4 / )  [(1 - aO{e-e(2h-m c o s h  ¢(z + z ')  - e - e"  cosh  ¢(z - z')} 

- e-e(~+z'){cosh ~(2h - H) + A~ sinh ~(2h " ' '  cosh CH + As ¢ sinh ~:H d~. [A13] 

The first term in [A13] is the expansion of the singular inverse distance Green's function in 
cylindrical polar coordinates. The required modification of [Al0] now follows by replacing that 
part of [A10] expressed in [A12] by [A13], and the coefficient of cos ( $ -  ~b') is seen to be 
identical with [7]. 


